Links
Comment on page

Equippable

RMRK Equippable lego composite example.
Equippable RMRK lego composite
The Equippable composite of RMRK legos uses both the Nestable and MultiAsset RMRK legos as well as the Equippable lego. In addition to these three RMRK legos, it also requires the Catalog RMRK lego. Let's first examine the Catalog RMRK lego and then the Equippable one.
The usage examples of package v2.0.0 are coming soon. The current examples are of the previous version.

Catalog

A Catalog can be considered a catalogue of parts from which an NFT can be composed. Parts can be either of the slot type or fixed type. Slots are intended for equippables.
NOTE: Catalogs are used through assets. Assets can cherry pick from the list of parts within the catalog, they can also define the slots they are allowed to receive.
Catalogs can be of different media types.
The catalog's type indicates what the final output of an NFT will be when this asset is being rendered. Supported types are PNG, SVG, audio, video, even mixed.

Equippable

Equippables are NFTs that can be equipped in the before mentioned slots. They have a set format and predefined space in the parent NFT.
Assets that can be equipped into a slot each have a reference ID. The reference ID can be used to specify which parent NFT the group of assets belonging to a specific reference ID can be equipped to. Additionally slots can specify which collection can be used within it or to allow any collection to be equipped into it.
Each slot of the NFT can have a predefined collection of allowed NFT collections to be equipped to this slot.
NOTE: To dig deeper into the Catalog and Equippable RMRK legos, you can also refer to the ERC-6220 that we published.

Abstract

In this tutorial we will examine the Equippable composite of RMRK blocks:
  • SimpleEquippable and SimpleCatalog work together to showcase the minimal implementation of the Equippable RMRK lego composite.
  • AdvancedEquippable and AdvancedCatalog work together to showcase a more customizable implementation of the Equippable RMRK lego composite.
Let's first examine the simple, minimal, implementation and then move on to the advanced one.

Simple Equippable

The simple Equippable consists of two smart contracts. Let's first examine the SimpleCatalog smart contract and then move on to the SimpleEquippable.

SimpleCatalog

The SimpleCatalog example uses the RMRKCatalogImpl. It is used by importing it using the import statement below the pragma definition:
import "@rmrk-team/evm-contracts/contracts/implementations/RMRKCatalogImpl.sol";
Once the RMRKCatalogImpl.sol is imported into out file, we can set the inheritance of our smart contract:
contract SimpleCatalog is RMRKCatalogImpl {
}
The RMRKCatalogImpl implements all of the required functionality of the Catalog RMRK lego. It implements adding of parts and equippable addresses as well as managing the equippables.
WARNING: The RMRKCatalogImpl only has minimal access control implemented. If you intend to use it, make sure to define your own, otherwise your smart contracts are at risk of unexpected behaviour.
The constructor to initialize the RMRKCatalogImpl accepts the following arguments:
  • symbol_: string type of argument representing the symbol of the catalog lego
  • type_: string type of argument representing the type of the catalog lego
In order to properly initialize the inherited smart contract, our smart contract needs to accept the arguments, mentioned above, in the constructor and pass them to RMRKCatalogImpl:
constructor(
string memory symbol,
string memory type_
) RMRKCatalogImpl(symbol, type_) {}
The SimpleCatalog.sol should look like this:
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.16;
import "@rmrk-team/evm-contracts/contracts/implementations/RMRKCatalogImpl.sol";
contract SimpleCatalog is RMRKCatalogImpl {
// NOTE: Additional custom arguments can be added to the constructor based on your needs.
constructor(
string memory symbol,
string memory type_
) RMRKCatalogImpl(symbol, type_) {}
}

RMRKCatalogImpl

Let's take a moment to examine the core of this implementation, the RMRKCatalogImpl.
It uses the RMRKCatalog and OwnableLock smart contracts from RMRK stack. To dive deeper into their operation, please refer to their respective documentation.
The following functions are available:
addPart
The addPart function is used to add a single catalog item entry and accept one argument:
  • intakeStruct: struct type of argument used to pass the values of the part of the catalog item entry to be added. It consists of:
    • partId: uint64 type of argument specifying the ID of the entry we want to add
    • part: struct type of argument defining the RMRK catalog item. It consists of:
      • itemType: enum type of argument defining the type of the item. The possible values are:
        • None
        • Slot
        • Fixed
      • z: uint8 type of argument specifying the layer the visual should appear in on the SVG base
      • equippable: address[] type of argument specifying the addresses of the collections that can equip this part
      • metadataURI: string type of argument specifying the metadata URI of the part
The intakeStruct should look something like this:
[
partID,
[
itemType,
z,
[
permittedCollectionAddress0,
permittedCollectionAddress1,
permittedCollectionAddress2
],
metadataURI
]
]
addPartList
The addPartList function is used to add a batch of catalog item entries and accepts an array of IntakeStructs described above. So an example of two IntakeStructs that would be passed to the function is:
[
[
partID0,
[
itemType,
z,
[
permittedCollectionAddress0,
permittedCollectionAddress1,
permittedCollectionAddress2
],
metadataURI
]
],
[
partID1,
[
itemType,
z,
[
permittedCollectionAddress0,
permittedCollectionAddress1,
permittedCollectionAddress2
],
metadataURI
]
]
]
addEquippableAddresses
The addEquippableAddresses function is used to add a number of equippable addresses to a single catalog entry. These define the collections that are allowed to be equipped in place of the catalog entry. It accepts two arguments:
  • partId: uint64 type of argument specifying the ID of the part that we are adding the equippable addresses to. Only parts of slot type are valid.
  • equippableAddresses: address[] type of argument specifying the array of addresses of the collections that may equip this part
setEquippableAddresses
The setEquippableAddreses function is used to update the equippable addresses of a single catalog entry. Using it overwrites the currently set equippable addresses. It accepts two arguments:
  • partId: uint64 type of argument specifying the ID of the part that we are setting the equippable addresses for. Only parts of slot type are valid.
  • equippableAddresses: address[] type of argument specifying the array of addresses of the collections that may equip this part
setEquippableToAll
The setEquippableToAll function is used to set the desired entry as equippable to any collection and accepts one argument:
  • partId: uint64 type of argument specifying which catalog entry we want to set as being equippable to any collection
resetEquippableAddresses
The resetEquippableAddresses function is used to remove all of the entries allowing for the entry to be equipped and accepts one argument:
  • partId: uint64 type of argument specifying which part we want to remove the equippable addresses from. Only parts of slot type are valid.

SimpleEquippable

The SimpleEquippable example uses the RMRKEquippableImpl. It is used by importing it using the import statement below the pragma definition:
import "@rmrk-team/evm-contracts/contracts/implementations/nativeTokenPay/RMRKEquippableImpl.sol";
The RMRKEquipRenderUtils is imported in the same manner, but only so that we can use it within the user journey script:
import "@rmrk-team/evm-contracts/contracts/RMRK/utils/RMRKEquipRenderUtils.sol";
Once both are imported, we can set the inheritance of our smart contract for the RMRKEquippableImpl.sol:
contract SimpleEquippable is RMRKEquippableImpl {
}
The RMRKEquippableImpl implements all of the required functionality of the Equippable RMRK lego composite. It implements minting, burning and asset management.
WARNING: The RMRKEquippableImpl only has minimal access control implemented. If you intend to use it, make sure to define your own, otherwise your smart contracts are at risk of unexpected behaviour.
The constructor to initialize the RMRKEquippableImpl accepts the following arguments:
  • name: string type of argument specifying the name of the collection
  • symbol: string type of argument specifying the symbol of the collection
  • collectionMetadata: string type of argument specifying the metadata URI of the whole collection
  • tokenURI: string type of argument specifying the base URI of the token metadata
  • data: struct type of argument providing a number of initialization values, used to avoid initialization transaction being reverted due to passing too many parameters
NOTE: The InitData struct is used to pass the initialization parameters to the implementation smart contract. This is done so that the execution of the deploy transaction doesn't revert because we are trying to pass too many arguments.
The InitData struct contains the following fields:
[
erc20TokenAddress,
tokenUriIsEnumerable,
royaltyRecipient,
royaltyPercentageBps, // Expressed in basis points
maxSupply,
pricePerMint
]
NOTE: Basis points are the smallest supported denomination of percent. In our case this is one hundreth of a percent. This means that 1 basis point equals 0.01% and 10000 basis points equal 100%. So for example, if you want to set royalty percentage to 5%, the royaltyPercentageBps value should be 500.
In order to properly initiate the inherited smart contract, our smart contract needs to accept the arguments, mentioned above, in the constructor and pass them to the RMRKEquippableImpl:
constructor(
string memory name,
string memory symbol,
string memory collectionMetadata,
string memory tokenURI,
InitData memory data
)
RMRKEquippableImpl(
name,
symbol,
collectionMetadata,
tokenURI,
data
)
{}
The SimpleEquippable.sol should look like this:
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.16;
import "@rmrk-team/evm-contracts/contracts/implementations/nativeTokenPay/RMRKEquippableImpl.sol";
import "@rmrk-team/evm-contracts/contracts/RMRK/utils/RMRKEquipRenderUtils.sol";
contract SimpleEquippable is RMRKEquippableImpl {
// NOTE: Additional custom arguments can be added to the constructor based on your needs.
constructor(
string memory name,
string memory symbol,
string memory collectionMetadata,
string memory tokenURI,
InitData memory data
)
RMRKEquippableImpl(
name,
symbol,
collectionMetadata,
tokenURI,
data
)
{}
}

RMRKEquippableImpl

Let's take a moment to examine the core of this implementation, the RMRKEquippableImpl.
It uses the RMRKEquippable, RMRKRoyalties, RMRKCollectionMetadata and RMRKMintingUtils smart contracts from RMRK stack. to dive deeper into their operation, please refer to their respective documentation.
Two errors are defined:
error RMRKMintUnderpriced();
error RMRKMintZero();
RMRKMintUnderpriced() is used when not enough value is used when attempting to mint a token and RMRKMintZero() is used when attempting to mint 0 tokens.
mint
The mint function is used to mint parent NFTs and accepts two arguments:
  • to: address type of argument that specifies who should receive the newly minted tokens
  • numToMint: uint256 type of argument that specifies how many tokens should be minted
There are a few constraints to this function:
  • after minting, the total number of tokens should not exceed the maximum allowed supply
  • attempting to mint 0 tokens is not allowed as it makes no sense to pay for the gas without any effect
  • value should accompany transaction equal to a price per mint multiplied by the numToMint
  • function can only be called while the sale is still open
nestMint
The nestMint function is used to mint child NFTs to be owned by the parent NFT and accepts three arguments:
  • to: address type of argument specifying the address of the smart contract to which the parent NFT belongs to
  • numToMint: uint256 type of argument specifying the amount of tokens to be minted
  • destinationId: uint256 type of argument specifying the ID of the parent NFT to which to mint the child NFT
The constraints of nestMint are similar to the ones set out for mint function.
addAssetToToken
The addAssetToToken is used to add a new asset to the token and accepts three arguments:
  • tokenId: uint256 type of argument specifying the ID of the token we are adding asset to
  • assetId: uint64 type of argument specifying the ID of the asset we are adding to the token
  • replacesAssetWithId: uint64 type of argument specifying the ID of the asset we are owerwriting with the desired asset
addEquippableAssetEntry
The addEquippableAssetEntry is used to add a new asset of the collection and accepts three arguments:
  • equippableGroupId: uint64 type of argument specifying the ID of the group this asset belongs to. This ID can then be referenced in the setValidParentRefId in order to allow every asset with this equippable reference ID to be equipped into an NFT
  • catalogAddress: address type of argument specifying the address of the Catalog smart contract
  • metadataURI: string type of argument specifying the URI of the asset
  • partIds: uint64[] type of argument specifying the fixed and slot parts IDs for this asset
setValidParentForEquippableGroup
The setValidParentForEquippableGroup is used to declare which group of assets are equippable into the parent address at the given slot and accepts three arguments:
  • equippableGroupId: uint64 type of argument specifying the group of assets that can be equipped
  • parentAddress: address type of argument specifying the address into which the asset is equippable
  • partId: uint64 type of argument specifying the ID of the part it can be equipped to

totalAssets

The totalAssets is used to retrieve a total number of assets defined in the collection.

updateRoyaltyRecipient

The updateRoyaltyRecipient function is used to update the royalty recipient and accepts one argument:
  • newRoyaltyRecipient: address type of argument specifying the address of the new beneficiary recipient

Deploy script

The deploy script for the simple Equippable resides in the deployEquippable.ts.
The deploy script uses the ethers, SimpleCatalog, SimpleEquippable, RMRKEquipRenderUtils and ContractTransaction imports. We will also define the pricePerMint constant, which will be used to set the minting price of the tokens. The empty deploy script should look like this:
import { ethers } from "hardhat";
import {
SimpleCatalog,
SimpleEquippable,
RMRKEquipRenderUtils,
} from "../typechain-types";
import { ContractTransaction } from "ethers";
const pricePerMint = ethers.utils.parseEther("0.0001");
async function main() {
}
main().catch((error) => {
console.error(error);
process.exitCode = 1;
});
Since we will expand upon this deploy script in the user journey, we will add a deployContracts function. In it we will deploy two SimpleEquippable smart contracts, one SimpleCatalog smart contract and a RMRKEquipRenderUtils smart contract. Once the smart contracts are deployed, we will output their addresses. The function is defined below the main function definition:
async function deployContracts(): Promise<
[SimpleEquippable, SimpleEquippable, SimpleCatalog, RMRKEquipRenderUtils]
> {
console.log("Deploying smart contracts");
const [beneficiary] = await ethers.getSigners();
const contractFactory = await ethers.getContractFactory("SimpleEquippable");
const catalogFactory = await ethers.getContractFactory("SimpleCatalog");
const viewsFactory = await ethers.getContractFactory("RMRKEquipRenderUtils");
const kanaria: SimpleEquippable = await contractFactory.deploy(
"Kanaria",
"KAN",
"ipfs://collectionMeta",
"ipfs://tokenMeta",
{
erc20TokenAddress: ethers.constants.AddressZero,
tokenUriIsEnumerable: true,
royaltyRecipient: await beneficiary.getAddress(),
royaltyPercentageBps: 10,
maxSupply: 1000,
pricePerMint: pricePerMint
}
);
const gem: SimpleEquippable = await contractFactory.deploy(
"Gem",
"GM",
"ipfs://collectionMeta",
"ipfs://tokenMeta",
{
erc20TokenAddress: ethers.constants.AddressZero,
tokenUriIsEnumerable: true,
royaltyRecipient: await beneficiary.getAddress(),
royaltyPercentageBps: 10,
maxSupply: 3000,
pricePerMint: pricePerMint
}
);
const catalog: SimpleCatalog = await catalogFactory.deploy("KB", "svg");
const views: RMRKEquipRenderUtils = await viewsFactory.deploy();
await kanaria.deployed();
await gem.deployed();
await catalog.deployed();
await views.deployed();
console.log(
`Sample contracts deployed to ${kanaria.address} (Kanaria), ${gem.address} (Gem) and ${catalog.address} (Catalog)`
);
return [kanaria, gem, catalog, views];
}
In order for the deployContracts to be called when running the deploy script, we have to add it to the main function:
const [kanaria, gem, catalog, views] = await deployContracts();
A custom script added to package.json allows us to easily run the script:
"scripts": {
"deploy-equippable": "hardhat run scripts/deployEquippable.ts"
}
Using the script with npm run deploy-equippable should return the following output:
npm run deploy-equippable
> @rmrk-team/[email protected] deploy-equippable
> hardhat run scripts/deployEquippable.ts
Deploying smart contracts
Sample contracts deployed to 0x5FbDB2315678afecb367f032d93F642f64180aa3 (Kanaria), 0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512 (Gem) and 0x9fE46736679d2D9a65F0992F2272dE9f3c7fa6e0 (Catalog)

User journey

With the deploy script ready, we can examine how the journey of a user using equippable would look like.
The base of the user journey script is the same as the deploy script, as we need to deploy the smart contract in order to interact with it:
import { ethers } from "hardhat";
import {
SimpleCatalog,
SimpleEquippable,
RMRKEquipRenderUtils,
} from "../typechain-types";
import { ContractTransaction } from "ethers";
const pricePerMint = ethers.utils.parseEther("0.0001");
async function main() {
const [kanaria, gem, catalog, views] = await deployContracts();
}
async function deployContracts(): Promise<
[SimpleEquippable, SimpleEquippable, SimpleCatalog, RMRKEquipRenderUtils]
> {
console.log("Deploying smart contracts");
const [beneficiary] = await ethers.getSigners();
const contractFactory = await ethers.getContractFactory("SimpleEquippable");
const catalogFactory = await ethers.getContractFactory("SimpleCatalog");
const viewsFactory = await ethers.getContractFactory("RMRKEquipRenderUtils");
const kanaria: SimpleEquippable = await contractFactory.deploy(
"Kanaria",
"KAN",
"ipfs://collectionMeta",
"ipfs://tokenMeta",
{
erc20TokenAddress: ethers.constants.AddressZero,
tokenUriIsEnumerable: true,
royaltyRecipient: await beneficiary.getAddress(),
royaltyPercentageBps: 10,
maxSupply: 1000,
pricePerMint: pricePerMint
}
);
const gem: SimpleEquippable = await contractFactory.deploy(
"Gem",
"GM",
"ipfs://collectionMeta",
"ipfs://tokenMeta",
{
erc20TokenAddress: ethers.constants.AddressZero,
tokenUriIsEnumerable: true,
royaltyRecipient: await beneficiary.getAddress(),
royaltyPercentageBps: 10,
maxSupply: 3000,
pricePerMint: pricePerMint
}
);
const catalog: SimpleCatalog = await catalogFactory.deploy("KB", "svg");
const views: RMRKEquipRenderUtils = await viewsFactory.deploy();
await kanaria.deployed();
await gem.deployed();
await catalog.deployed();
console.log(
`Sample contracts deployed to ${kanaria.address} (Kanaria), ${gem.address} (Gem) and ${catalog.address} (Catalog)`
);
return [kanaria, gem, catalog, views];
}
main().catch((error) => {
console.error(error);
process.exitCode = 1;
});
NOTE: The scripts in these examples are being run in the Hardhat's emulated network. In order to use another, please refer to Hardhat's network documentation.
Once the smart contracts are deployed, we can setup the Catalog. We will set it up have two fixed part options for background, head, body and wings. Additionally we will add three slot options for gems. All of these will be added using the addPartList method. The call together with encapsulating setupBase function should look like this:
async function setupCatalog(catalog: SimpleCatalog, gemAddress: string): Promise<void> {
console.log("Setting up Catalog");
// Setup catalog with 2 fixed part options for background, head, body and wings.
// Also 3 slot options for gems
const tx = await catalog.addPartList([
{
// Background option 1
partId: 1,
part: {
itemType: 2, // Fixed
z: 0,
equippable: [],
metadataURI: "ipfs://backgrounds/1.svg",
},
},
{
// Background option 2
partId: 2,
part: {
itemType: 2, // Fixed
z: 0,
equippable: [],
metadataURI: "ipfs://backgrounds/2.svg",
},
},
{
// Head option 1
partId: 3,
part: {
itemType: 2, // Fixed
z: 3,
equippable: [],
metadataURI: "ipfs://heads/1.svg",
},
},
{
// Head option 2
partId: 4,
part: {
itemType: 2, // Fixed
z: 3,
equippable: [],
metadataURI: "ipfs://heads/2.svg",
},
},
{
// Body option 1
partId: 5,
part: {
itemType: 2, // Fixed
z: 2,
equippable: [],
metadataURI: "ipfs://body/1.svg",
},
},
{
// Body option 2
partId: 6,
part: {
itemType: 2, // Fixed
z: 2,
equippable: [],
metadataURI: "ipfs://body/2.svg",
},
},
{
// Wings option 1
partId: 7,
part: {
itemType: 2, // Fixed
z: 1,
equippable: [],
metadataURI: "ipfs://wings/1.svg",
},
},
{
// Wings option 2
partId: 8,
part: {
itemType: 2, // Fixed
z: 1,
equippable: [],
metadataURI: "ipfs://wings/2.svg",
},
},
{
// Gems slot 1
partId: 9,
part: {
itemType: 1, // Slot
z: 4,
equippable: [gemAddress], // Only gems tokens can be equipped here
metadataURI: "",
},
},
{
// Gems slot 2
partId: 10,
part: {
itemType: 1, // Slot
z: 4,
equippable: [gemAddress], // Only gems tokens can be equipped here
metadataURI: "",
},
},
{
// Gems slot 3
partId: 11,
part: {
itemType: 1, // Slot
z: 4,
equippable: [gemAddress], // Only gems tokens can be equipped here
metadataURI: "",
},
},
]);
await tx.wait();
console.log("Catalog is set");
}
NOTE: The metadataURI of a slot can be used to retrieve a fallback asset when no asset is equipped into it.
Notice how the z value of the background is 0 and that of the head is 3. Also note how the itemType value of the Slot type of fixed items is 2 and that of equippable items is 1. Additionally the metadataURI is usually left blank for the equippables, but has to be set for the fixed items. The equippable values have to be set to the gem smart contracts for the equippable items.
In order for the setupCatalog to be called, we have to add it to the main function:
await setupCatalog(catalog, gem.address);
With the Catalog set up, the tokens should now be minted. Both Kanaria and Gem tokens will be minted in the mintTokens. To define how many tokens should be minted, totalBirds constant will be added below the import statements:
const totalBirds = 5;
The mintToken function should accept two arguments (Kanaria and Gem). We will prepare a batch of transactions to mint the tokens and send them. Once the tokens are minted, we will output the total number of tokens minted. While the Kanaria tokens will be minted to the tokenOwner address, the Gem tokens will be minted using the nestMint method in order to be minted directly to the Kanaria tokens. We will mint three Gem tokens to each Kanaria. Since all of the nested tokens need to be approved, we will also build a batch of transaction to accept a single nest-minted Gem for each Kanaria:
async function mintTokens(
kanaria: SimpleEquippable,
gem: SimpleEquippable
): Promise<void> {
console.log("Minting tokens");
const [ , tokenOwner] = await ethers.getSigners();
// Mint some kanarias
console.log("Minting Kanaria tokens");
let tx = await kanaria.mint(tokenOwner.address, totalBirds, {
value: pricePerMint.mul(totalBirds),
});
await tx.wait();
console.log(`Minted ${totalBirds} kanarias`);
// Mint 3 gems into each kanaria
console.log("Nest-minting Gem tokens");
let allTx: ContractTransaction[] = [];
for (let i = 1; i <= totalBirds; i++) {
let tx = await gem.nestMint(kanaria.address, 3, i, {
value: pricePerMint.mul(3),
});
allTx.push(tx);
}
await Promise.all(allTx.map((tx) => tx.wait()));
console.log(`Minted 3 gems into each kanaria`);
// Accept 3 gems for each kanaria
console.log("Accepting Gems");
for (let tokenId = 1; tokenId <= totalBirds; tokenId++) {
allTx = [
await kanaria.connect(tokenOwner).acceptChild(tokenId, 2, gem.address, 3 * tokenId),
await kanaria.connect(tokenOwner).acceptChild(tokenId, 1, gem.address, 3 * tokenId - 1),
await kanaria.connect(tokenOwner).acceptChild(tokenId, 0, gem.address, 3 * tokenId - 2),
];
}
await Promise.all(allTx.map((tx) => tx.wait()));
console.log(`Accepted gems for each kanaria`);
}
NOTE: We assign the tokenOwner the second available signer, so that the assets are not automatically accepted when added to the token. This happens when an account adding an asset to a token is also the owner of said token.
In order for the mintTokens to be called, we have to add it to the main function:
await mintTokens(kanaria, gem);
Having minted both Kanarias and Gems, we can now add assets to them. We will add assets to the Kanaria using the addKanariaAssets function. It accepts Kanaria and address of the Catalog smart contract. Assets will be added using the addEquippableAssetEntry method. We will add a default asset, which doesn't need a baseAddress value. The composed asset needs to have the baseAddress. We also specify the fixed parts IDs for background, head, body and wings. Additionally we allow the gems to be equipped in the slot parts IDs. With the asset entires added, we can add them to a token and then accept them as well:
async function addKanariaAssets(
kanaria: SimpleEquippable,
baseAddress: string
): Promise<void> {
console.log("Adding Kanaria assets");
const [ , tokenOwner] = await ethers.getSigners();
const assetDefaultId = 1;
const assetComposedId = 2;
let allTx: ContractTransaction[] = [];
let tx = await kanaria.addEquippableAssetEntry(
0, // Only used for assets meant to equip into others
ethers.constants.AddressZero, // catalog is not needed here
"ipfs://default.png",
[]
);
allTx.push(tx);
tx = await kanaria.addEquippableAssetEntry(
0, // Only used for assets meant to equip into others
catalogAddress, // Since we're using parts, we must define the catalog
"ipfs://meta1.json",
[1, 3, 5, 7, 9, 10, 11] // We're using first background, head, body and wings and state that this can receive the 3 slot parts for gems
);
allTx.push(tx);
// Wait for both assets to be added
await Promise.all(allTx.map((tx) => tx.wait()));
console.log("Added 2 asset entries");
// Add assets to token
const tokenId = 1;
allTx = [
await kanaria.addAssetToToken(tokenId, assetDefaultId, 0),
await kanaria.addAssetToToken(tokenId, assetComposedId, 0),
];
await Promise.all(allTx.map((tx) => tx.wait()));
console.log("Added assets to token 1");
// Accept both assets:
tx = await kanaria.connect(tokenOwner).acceptAsset(tokenId, 0, assetDefaultId);
await tx.wait();
tx = await kanaria.connect(tokenOwner).acceptAsset(tokenId, 0, assetComposedId);
await tx.wait();
console.log("Assets accepted");
}
Adding assets to Gems is done in the addGemAssets. It accepts Gem, address of the Kanaria smart contract and the address of the Catalog smart contract. We will add 4 assets for each gem; one full version and three that match each slot. Reference IDs are specified for easier reference from the child's perspective. The assets will be added one by one. Note how the full versions of gems don't have the equippableGroupId.
Having added the asset entries, we can now add the valid parent reference IDs using the setValidParentForEquippableGroup. For example if we want to add a valid reference for the left gem, we need to pass the value of equippable reference ID of the left gem, parent smart contract address (in our case this is Kanaria smart contract) and ID of the slot which was defined in Catalog (this is ID number 9 in the Catalog for the left gem).
Last thing to do is to add assets to the tokens using addAssetToToken. Asset of type A will be added to the gems 1 and 2, and the type B of the asset is added to gem 3. All of these should be accepted using acceptAsset:
async function addGemAssets(
gem: SimpleEquippable,
kanariaAddress: string,
catalogAddress: string
): Promise<void> {
console.log("Adding Gem assets");
const [ , tokenOwner] = await ethers.getSigners();
// We'll add 4 assets for each gem, a full version and 3 versions matching each slot.
// We will have only 2 types of gems -> 4x2: 8 assets.
// This is not composed by others, so fixed and slot parts are never used.
const gemVersions = 4;
// These refIds are used from the child's perspective, to group assets that can be equipped into a parent
// With it, we avoid the need to do set it asset by asset
const equippableRefIdLeftGem = 1;
const equippableRefIdMidGem = 2;
const equippableRefIdRightGem = 3;
// We can do a for loop, but this makes it clearer.
console.log("Adding asset entries");
let allTx = [
let allTx = [
await gem.addEquippableAssetEntry(
// Full version for first type of gem, no need of refId or catalog
0,
catalogAddress,
`ipfs://gems/typeA/full.svg`,
[]
),
await gem.addEquippableAssetEntry(
// Equipped into left slot for first type of gem
equippableRefIdLeftGem,
catalogAddress,
`ipfs://gems/typeA/left.svg`,
[]
),
await gem.addEquippableAssetEntry(
// Equipped into mid slot for first type of gem
equippableRefIdMidGem,
catalogAddress,
`ipfs://gems/typeA/mid.svg`,
[]
),
await gem.addEquippableAssetEntry(
// Equipped into left slot for first type of gem
equippableRefIdRightGem,
catalogAddress,
`ipfs://gems/typeA/right.svg`,
[]
),
await gem.addEquippableAssetEntry(
// Full version for second type of gem, no need of refId or catalog
0,
ethers.constants.AddressZero,
`ipfs://gems/typeB/full.svg`,
[]
),
await gem.addEquippableAssetEntry(
// Equipped into left slot for second type of gem
equippableRefIdLeftGem,
catalogAddress,
`ipfs://gems/typeB/left.svg`,
[]
),
await gem.addEquippableAssetEntry(
// Equipped into mid slot for second type of gem
equippableRefIdMidGem,
catalogAddress,
`ipfs://gems/typeB/mid.svg`,
[]
),
await gem.addEquippableAssetEntry(
// Equipped into right slot for second type of gem
equippableRefIdRightGem,
catalogAddress,
`ipfs://gems/typeB/right.svg`,
[]
),
];
await Promise.all(allTx.map((tx) => tx.wait()));
console.log(
"Added 8 gem assets. 2 Types of gems with full, left, mid and right versions."
);